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Abstract.  Bees have been extensively studied by biologist, mainly due to their great importance to agriculture.
However, the discrimination of some bee species is difficult, requiring expertise and time. This difficulty has been
hampering the conduction of new researches in this area. In the last years, the classification of bee species through
morphometric features extracted from the bee wing was studied, leading to automated softwares to perform this task
for some groups of bees. However, little effort was devoted on exploring different classification algorithms, and linear
separation techniques were extensively used. In this article, we evaluate the classification performance of one ensemble
learning and several classification techniques with a training set of real bee wings, from 26 different subspecies. The
Stacking ensemble learning algorithm performed better than any individual classifier in our training set, proving that
ensemble learning techniques can perform better for bee species identification, particularly when the training set is
multi-class and class-imbalanced.

Categories and Subject Descriptors: 1.2.6 [Artificial Intelligence|: Learning; 1.5.4 [Pattern Recognition|: Appli-
cations

Keywords: Geometric Morphometrics, Machine Learning, Pattern Recognition, Stacking, Supervised Learning

1. INTRODUCTION

"One well-worn, and probably accurate, estimate says that one-third of the human diet
can be traced directly, or indirectly, to bee pollination."” [Delaplane et al. 2000]

Bees are major pollinators and, due to their great importance to agriculture [Klein et al. 2007],
various researches have been conducted aiming at their study and conservation. However, some bee
species are really difficult to distinguish, thus, this identification task has been hampering the progress
of researches in this area, since the correct identification of some species requires time and specialized
knowledge. A serious decline of the pollinator populations is being noticed since the end of the 20"
century [Buchmann et al. 1997], leading to a pressing need of these researches to identify means to
preserve the population of pollinators.

Some techniques can be used for species identification, e.g., isoenzymes or DNA analysis, but
molecular and biochemical methods are expensive [Francoy et al. 2008]. Aiming a cheaper procedure,
the identification through manually measured morphometric features from wings, sternites and legs
was developed. Nevertheless, the manual measurement of several physical features requires time and
expertise [Francoy et al. 2008]. More recent studies have shown that features extracted from patterns
of wing venation are good discriminatory elements to differentiate among insect species [Weeks et al.
1997; Francoy et al. 2008].The wing is an easily accessible part of the bee’s body and the veins
(venation) are easy to distinguish from the wing background in an image. This has allowed the
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development of softwares that provided a higher level of automation [Roth et al. 1999; Tofilski 2004].
However, these softwares are either hyper-specialized to an specific group of bees or still require much
manual interaction. There is still room to automated approaches that work for most of bee species
and to new methods that improve the classification rate of wing images.

The current method to perform this task is to take a digital photo of the wing through a microscope
and manually mark (usually with the assistance of a computational tool) the junctions of the veins in
the wing. These marks are called landmarks and the resulting image for each sample will be similar
to Figure 1. With the position of all landmarks, it is possible to extract features for classification (see
Section 3.4).

Fig. 1. Apis mellifera adamii forewing with landmarks (squares on the vein junctions).

Despite the development of new techniques and softwares, there is no systematic study defining
which is the best classifier to bee species identification based on wing images. Previous works have
stated that the use of ensemble learning methods can lead to better results than the use of a single
classifier [Dzeroski and Zenko 2004]. The use of ensemble methods also achieved a better accuracy
in classification problems with class-imbalanced and multi-class training sets [Lin and Chen 2012;
Sainin and Alfred 2012; Rokach et al. 2013]. Since the biologist’s interest relies on classifying a given
bee among several species, and some bee species are rarer than others (what can lead to imbalanced
training sets), in this work we will evaluate the performance of ensemble learning techniques to bee
species identification.

Thence, we chose classifiers that have been successfully used to bee identification or other similar
domains to be analyzed, both in an ensemble learning algorithm and as classifier. We will provide
references of sucessfull uses of each classifier in Section 2. The contribution of this article will be
detailed in Section 3.

This article is organized as follows: Section 2 defines classification and each one of the classifiers
used in this article. Section 3 defines our proposal and how we conducted the experiments, while
Section 4 brings the results and the discussion about them. Finally, Section 5 outlines the main
findings of this article and the open questions to be analyzed in further works.

2. CLASSIFICATION

In the general case of supervised learning, we want to classify a collection of observations into one of
a set, of predefined classes. The data needed to perform the classification consist in a set of feature
values measured somehow from a set of samples, that are associated with a class label defined by an
expert [Tarca et al. 2007]. This data is called training set and will be used to train classifiers.

Specifically to bee species classification, each class label represents a species (or subspecies, de-
pending on the application), and each feature is a value measured somehow from collected specimens
(e.g., features shown in Section 3.4). Each classifier has an unique procedure to learn how to classify
new observations from a training set. The classifiers used in this research are described in the next
subsections.
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2.1 Linear Discriminant Analysis

Also known as Fisher’s Discriminant Analysis, the Linear Discriminant Analysis (LDA) finds a linear
combination of features that allows the discrimination of instances belonging to different classes [Fisher
1936], what is done in the training phase. In the classification phase, LDA compares the linear
combination of measured feature values from an unlabeled observation with the training set, finding
the most suitable class and labeling the observation.

Linear separation techniques have been extensively used to bee species identification [Tofilski 2008;
Koca and Kandemir 2013; Roth et al. 1999].

2.2 Naive Bayes

The Naive Bayes classifier estimates the probability of new observations belong to each class, labeling
them according to the class that maximizes this value. This probability is obtained for each class in
the classification phase based on the Bayes’ theorem, assuming that all features are independent.

The probability of a feature assume a given value is usually estimated assuming that all features
values for a given class have a gaussian distribution, these distributions are defined for each class in
the training phase.

This classifier assumes the independency between features in order to act in a relaxed problem and,
consequently, reduce the computacional effort. In practice, Naive Bayes has already been used in
various applications and can compete against more sophisticated classifiers, being successfully applied
in several cases, e.g., text classification and medical diagnostics [Rish 2001].

2.3 Logistic

The Logistic classifier builds a ranking of probabilities of an observation being of each possible class,
given a feature vector, labeling the observation with the most probable class. Unlike the Naive Bayes,
the Logistic classifier does not assume statistical independency of features.

The probability of an observation being of a given class is determined in the classification phase by
applying the logistic function that have been defined in the training phase [Witten et al. 2011].

2.4 K Nearest Neighbors

The K Nearest Neighbors (KNN) classifier is an instance-based learning algorithm, i.e., KNN stores
all the training set rather than building a prediction model. Each sample is taken as a point in a
cartesian space with p dimensions and the classification phase is performed by: Defining the point
corresponding to the observation in the same cartesian space of the samples; Defining the k nearest
neighbors (samples) to the observation.; and labeling the observation with the most frequent class
among the defined k neighbors.

In order to perform classification, a metric must be defined to calculate the distance between two
points, e.g., the Euclidian distance [Russell and Norvig 2003]. This classifier has been used in various
applications, obtaining, for example, good results in parasitic species recognition [Shinn et al. 2000].

2.5 C4.5
This classifier builds a decision tree in a training phase to posterior use in the classification of new
observations. An one-feature test is chosen to build the decision tree from a training set T, so that y

mutually exclusive outputs are defined and T is splitted in y subsets, where T; has all the instances
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of the output i. After defining this test, the decision tree will have a vertex identifying the selected
test and an edge to each possible output.

After iterating this procedure through all the features, the final decision tree is obtained [Quinlan
1993]. This classifier was successfully applied to assist in the decision-making of pig farming [Kirchner
et al. 2004].

2.6 Multilayer Perceptron

An Artificial Neural Network (ANN) is a computacional model inspired in biological processes of the
brain. ANNs are composed by neurons, which are units connected by directed bonds that perform
the input processing. ANN can be used in classification problems.

Multilayer Perceptron (MLP) is the most popular type of ANN, where multiple layers of neurons
are trained with the backpropagation method [Basheer and Hajmeer 2000]. For this type of ANN, the
signals are propagated from the input to the output layer through a hidden layer, and each neuron in
the hidden layer associates an weight to each input. The output layer, similarly as the hidden layer,
processes the inputs of the hidden layer neurons and outputs the estimated class label. The weights
of each neuron is learned during the training phase, and are estimated minimizing some loss function
[Tarca et al. 2007].

This classifier has been applied in various situations, showing the best performance to identification
of species of the genus Fuglossa with pixel-based features [Santana et al. 2014].

2.7 Support Vector Machine

The Support Vector Machine (SVM) finds an optimal hyperplane separating the samples, i.e., the
hyperplane that defines the bigger separation margin between different classes. The points defined by
the training set that are in the margin (closer to the hyperplane) are called Support Vectors.

However, it can be impossible to perform a linear separation between classes; in this case, the
feature vector x of p dimensions is transformed into a vector of N dimensions (N > p), so that a
separation can be found in a higher dimension. A function ¢ : R? — R is chosen to transform the
feature vector, enabling to define a hyperplane for non-linear data [Cortes and Vapnik 1995].

The hyperplane is defined in the training phase, while the classification phase consists in finding
the most suitable class for the new observation according to its relative position. This classifier was
successfully used for bee species identification in [Roth et al. 1999]. We used the polynomial kernel in
this article.

2.8 Bayesian Network

The Bayesian Network (BayesNet) builds a network that represents the data in the training set. This
network can be used to represent the probability of an observation being of a given class. To build
a network, two components must be defined: a function for evaluating a given network based on the
data and a method for searching through the space of possible networks. These components allow the
construction of a network that represents properly the data in the training set and will be used to
classify new observations [Witten et al. 2011].

3. PROPOSAL AND EXPERIMENTS
In a real situation where a biologist would build a training set to train a software, some classes would
have more samples than others, since some subspecies are harder to find than others. The outcome

of this will be a class-imbalanced training set, exactly the same scenario where ensemble learning
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achieved better classification accuracy [Lin and Chen 2012]. However, there is no published work of
our knowledge evaluating the performance of ensemble learning techniques to bee species identification.

The contribution of this article is the evaluation of if an ensemble learning technique can perform
better than single classifiers when applied to bee species identification by wings. We will perform
this evaluation with a realist training set, composed by real wing images, to ensure an evaluation
as better as possible. The evaluation will be carried out with features that are familiar to biologists
and achieved the best result so far (Section 3.4). On the next subsection we will describe Ensemble
Learning in general and the Stacking algorithm, that was used in this research. The cross-validation
technique used to extract metrics for this evaluation will be described in Section 3.2.

3.1 Ensemble Learning

The idea of ensemble learning is to employ multiple learners and combine their predictions. There is
no definitive taxonomy. In [Jain et al. 2000] eighteen classifier combination schemes are summarized,
while in [Witten et al. 2011] several methods for combining multiple models are detailed. This method
has been shown to be an effective tool for solving multi-class classification tasks [Rokach et al. 2013].

The generalization ability of an ensemble is usually much stronger than that of a single learner.
For the following reasons: (1)The training data might not provide sufficient information for choosing
a single best learner; (2)The search processes of the learning algorithms might be imperfect; (3)The
hypothesis space being searched might not contain the true target function, while ensembles can give
some good approximation.

In this article we applied the method called Stacked Generalization (Stacking), which is an ensemble
method that combines the output from different classifiers to achieve greater predictive accuray. It
involves training a learning algorithm to combine the predictions of several other classifiers. In typical
stacking implementation, a number of first-level individual learners are generated from the training
set by employing different learning algorithms. Then all individual learners are combined by a second-
level learner which is called as meta-learner. This is done by training the meta-learner with the output
of each individual learners, rather than with the original training set. Stacking typically yields to a
better performance than any of the individual models|Wolpert 1992].

For this article, the Stacking was used with SVM as meta-learner and the first-level classifiers were
used as follows: SVM, Logistic, Naive Bayes and BayesNet. Other combinations of classifiers were
also tested in the first-level, but this combination achieved a better performance, thus we will present
the results of this setup.

3.2 Cross-Validation

As explained in Section 2, all classifier learns how to perform the classification through a labeled
training set. This approach leads to what we call as overfitting. That means the classifier has excelent
performance to classify the training set, however does not keep the same performance classifying new,
previously unknown, observations [Russell and Norvig 2003]. The Cross-Validation is a method to
obtain an estimate of the accuracy rate of a classifier trying to avoid the bias induced by overfitting.

The k-fold Cross-Validation randomly splits the training set in k& mutually exclusive subsets (folds),
with approximately 7 samples in each fold, where n is the number of samples in the training set.
After the training set division, k experiments are performed, where one fold will be used as the test
set and the other k£ — 1 will be used as training set. After the evaluation of all folds, the mean of the

experiments is calculated and will be taken as the performance of the classifier on the Cross-Validation.

The Stratified Cross-Validation is a variation of the k-fold Cross-Validation, where the training set
is splitted so that the proportion of labels in each of the folds is roughly the same as in the training
set.
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Since we have an uneven training set, we have used the stratified cross-validation in order to avoid
leaving folds without samples of some classes in the training set division.

3.3 Experimental setup

In order to verify if ensemble methods can improve the performance of bee species identification, we
used a training set provided by an taxonomist with marked landmarks and the respective label of 1821
wing images of 26 subspecies of Apis mellifera to build the training set. The number of examples per
class is different, since some subspecies are harder to find than others. The number of examples per
class ranges from 10 to 150.

In order to calculate a measure to define the best classification method, we have performed a 10-fold
stratified cross-validation 20 times with different randomic splits. We then compared the observed
performance for all the classifiers in these experiments, calculating an error margin with the standard
error and testing the statistic relevance of the results with a Wilcoxon Signed Rank Test [Wilcoxon
1945], both with 95% confidence factor.

All the experiments were executed on MATLAB [MATLAB 2012] and the WEKA API [Hall et al.
2009] was used as the implementation of the classifiers Naive Bayes, Logistic, MLP, KNN, BayesNet,
Stacking, and SVM. The MATLAB implementation of the LDA was used.

3.4 Feature Extraction

We extracted landmark-based features from Geometric Morphometrics (reported to be the best
method to extract features from landmarks [Tofilski 2008; Koca and Kandemir 2013; Roth et al.
1999]) that have already been sucessfully used for bee species identification [Tofilski 2008; Koca and
Kandemir 2013; Francoy et al. 2008; Kandemir et al. 2011; Santana et al. 2014]. Since all features
rely on the landmarks’ position, firstly we chose 19 landmarks as shown in Figure 1 using the tpsDig
software [Rohlf 2010a]. Then, we extracted the features: Aligned Coordinates, Centroid Size, Weight
Matrix of the Principal Warps, and the Relative Warps scores in the tpsRelw software [Rohlf 2010b].

The Aligned Coordinates consist in the x and y coordinates of all landmarks (as in Figure 1) after
a normalization to remove discrepancies regarding to translation, scale and rotation [Bookstein 1991].
The centroid size is the square root of the quadratic distance between each landmark and their centroid
[Bookstein 1991]. The Weight Matrix of the Principal Warps and the Relative Warps scores are tools
to shape variation analysis, and (for 19 landmarks) correspond to 34 ratios each one [Bookstein 1989;
1991] .

Thus, our resulting feature vector has 107 features and the class label.

4. RESULTS AND DISCUSSION

Figure 2 shows the hit ratio achieved by each classifier in the experiments, where the values represent
a mean of the 20 observed Cross-Validation performances (as explained in Section 3). The error
margin is defined by the standard error and, according to the Wilcoxon Signed Rank Test with 95%
confidence factor, all the differences between classifiers have statistical meaning. The results confirm
our hypothesis that Ensemble Learning methods could perform better than individual classifiers, since
the Stacking was the best classification algorithm in our experiments.

Surprisingly, the Naive Bayes (that, to the best of our knowledge, has been cited in only one
research on this domain [Santana et al. 2014]) performed better than the widely used LDA. This
outcome indicate that the introduction of new classification algorithms can be beneficial to bee species
identification, and, in the case of training samples with uneven number of samples per species, the
use of ensemble learning techniques can lead to a better performance than the use of individual
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classifiers. Thus, when the accuracy is the priority, the use of Stacking is recommended over single
classifiers. The increase in computational costs demanded by ensemble techniques was not explored
in this article, thus, this counter-balance must be evaluated if the biologist has time restrictions to
perform the classification task. In some situations, the Naive Bayes can be a better option due to its
lower computational costs and for having a performance only marginally worse than Stacking.
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Fig. 2. Mean of the cross-validation performance achieved by each classifier in 20 runs, the error margin is shown in
yellow. Accuracy values are in percentage.

5. CONCLUSION

In this article we outlined the importance of bee species identification and the need of better techniques
and algorithms to perform this task. We have evaluated an Ensemble Learning technique and 8 state-
of-the-art classifiers in an experiment with real wing images. The Ensemble Learning technique
performed better than individual classifiers and, surprisingly, the Naive Bayes (scarcely used in this
domain) also performed better than the widely used LDA, thus indicating that there is still much
more room to improvements regarding the classification techniques for bee species identification.

Further works can focus on the definition of the best classifier to pixel-extracted features, that have
been proved to increase the performance of classification when used with the appropriate classification
algorithm [Santana et al. 2014]. Tt is also possible to evaluate the performance of other ensemble
learning techniques, such as Bagging, Radom Forest, Boosting, and Vote [Witten et al. 2011]. Other
open question is the compromise between accuracy and computational costs (ensemble techniques
demand more computation times), since in this article we did not define when it is better to use
Stacking or Naive Bayes in situations that have time restrictions.
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